欢迎访问苏州安峰环保科技有限公司官网

全国服务热线 400-058-1098
废水处理方法
当前位置:首页 » 废水处理方法 » 印染废水处理能不能实现零排放要求?

印染废水处理能不能实现零排放要求?

印染废水处理零排放可以实现再次回用效果,常用处理工艺有吸附处理、膜分离和高级氧化法等。印染废水整体COD偏高,废水总量占到工业用水35%,印染废水处理如果再次回用,可以给企业节省较一笔用水费用,市场对印染废水处理利用率却不到10%,这也给印染废水回用带来更多的可能性。


印染废水治理

  
  印染废水深度处理技术
  
  1吸附处理技术

  
  将废水通过由吸附剂组成的滤床,污染物质被吸附在多孔物质表面上或被过滤除去。活性炭是印染废水深度处理中最常用的吸附剂,其微孔多,比表面积可高达500~600m2/g,具有很强的吸附脱色性能,特别适合相对分子质量小于400的水溶性染料的脱色吸附。但活性炭对疏水性染料吸附效果较差,其再生也比较复杂且费用昂贵,限制了吸附法在印染废水深度处理中的应用。天然矿物如高岭土、硅藻土、活性白土以及煤粉等也具有较高的吸附性能,在印染废水的深度处理中也有使用。
  
  另外,李蒙英等〔2〕研究了利用青霉菌对印染废水进行吸附处理,结果发现:其对黑色和红色染浴废水的色度具有较好的处理效果,去除率达到了98.0%和74.5%,为吸附法的发展提供了新的选择。吸附法虽然见效快,但是使用后的吸附剂再生比较困难,如果不进行回收再生则容易产生二次污染。因此,研发新型高效且易再生的吸附剂是当前吸附方法的研究发展方向。
  
  2膜分离技术
  
  膜对不同物质具有透过性差异,膜分离技术就是利用膜的这种特性,在一定的传质推动力下,对混合物进行分离的方法。印染废水深度处理所用的膜分离技术主要有微滤(MF)、超滤(UF)、纳滤(NF)和反渗透(RO)。MF和UF常作为NF和RO的预处理;UF能分离大分子有机物、胶体、悬浮固体;NF能实现脱盐与浓缩的同时进行;RO能去除可溶性金属盐、有机物、胶粒等并截留所有离子。阮慧敏等〔3〕采用UF+RO工艺对浙江某印染厂废水生化处理后的出水进行处理,膜系统进水COD100~350mg/L,色度180倍,电导率800~1350μS/cm。膜系统处理后出水COD<10mg/L,色度1~2倍,电导率<30μS/cm。XujieLu等〔4〕采用生物滤池结合膜分离的方法,当进水COD为150~450mg/L时,出水COD降到50mg/L以下,去除率高达91%,且色度、浊度、铁锰浓度的去除效果都非常好。
  
  膜分离技术的优势为:其不仅能去除水中残余的有机物,降低色度,还能脱除无机盐类,防止系统中无机盐的积累,是印染废水深度处理中极具前景的一项技术。然而,膜处理工艺的成本较高,且膜组件易被污染而缩短其使用寿命。只有通过控制并降低膜污染来延长膜寿命,从而降低成本,膜分离技术在印染废水深度处理中才会得到更加广泛的应用。
  
  3高级氧化深度处理技术
  
  (1)化学氧化技术。在印染废水深度处理中,O3和Fenton试剂是比较常用的氧化剂。O3具有较强的脱色作用,虽然对COD的去除效果很小,但是可以改变废水的B/C,从而提高废水的可生化性。卢宁川等〔5〕采用O3氧化对印染废水进行处理,结果发现:COD的去除率为72%,而色度降低了94%。郭召海等〔6〕研究了O3对色度去除和B/C的影响,发现臭氧的投加量为15mg/L左右时,色度的去除率可以达到70%,B/C也提高了一倍多。O3氧化的主要优点是设备简单紧凑、占地面积小、容易实现自动化控制;主要缺点是处理成本高,不适合大流量废水的处理。
  
  Fenton试剂是由H2O2和Fe2+复合而成的氧化剂,在酸性条件下产生的·OH具有极强的氧化作用,特别适合处理成分比较复杂的染料废水。姜兴华等〔7〕利用Fenton试剂对印染废水进行深度处理,结果发现:pH2~3,H2O2用量3.2mL/L,铁炭体积比1∶1,反应时间90min时,出水COD去除90%以上,色度降低99%,盐度降低64%,回用水水质指标均达到了回用要求。史红香等〔8〕也对Fenton试剂处理印染废水进行了研究,获得了类似的结果。Fenton氧化对COD和色度具有较强的去除能力,但是铁离子的存在可能会影响水的颜色,而且反应的pH较低,可能对其他处理工序有影响。
  
  (2)光催化氧化技术。利用强氧化剂在UV辐射下产生具有强氧化能力的·OH来处理废水,具有低能耗、无二次污染、氧化彻底等优点,最常用的有UV/Fenton、UV/O3、UV/H2O2等。光催化研究较多的还有以光敏化半导体为催化剂,其中TiO2光催化剂应用最广,且处理效果最好。TiO2在光辐射下,其价带上会产生电子空穴(h+)对,TiO2表面吸附的有机物被具有强氧化性的h+活化、氧化而降解。冯丽娜等〔9〕采用了TiO2/活性炭负载体系对某印染厂的二级处理出水进行处理,进水COD在300mg/L左右,在最佳反应条件下,出水COD降到50mg/L,色度降为2倍,研究表明:利用活性炭的吸附性能,有助于解决TiO2的流失、分离和回收问题,提高光催化剂的处理效果。但废水本身的透光性和光利用率制约着光催化技术在废水处理工业中的应用。
  
  (3)电化学氧化技术。在外加电场作用下,在特定反应器内,通过一定化学反应、电化学过程或物理过程,产生大量的自由基,利用自由基的强氧化性对废水中的污染物进行降解的过程。电化学技术具有易控制、无污染或少污染、高度灵活等特点。
  
  M.Kennedy〔10〕指出电化学方法对印染废水的脱色非常有效,当电化学反应器中废水主流区Fe2+质量浓度为200~500mg/L时,色度去除率达到90%~98%,COD和BOD去除率分别达到50%和70%。但这种可溶性电极氧化法的电极消耗过大,故新型电极的开发就成为研究的热点之一。贾金平等〔11〕利用活性炭纤维与铁的复合电极降解多种模拟印染废水,取得了较好的结果。雷阳明等〔12〕以PbO2/Ti为阳极处理模拟印染废水,色度和COD去除率最高可达99.5%和78.6%。
  
  4高效生物处理技术
  
  印染废水二级出水污染物可生化性不高,生物降解有一定难度,生物法的重点在于开发强化生物技术的新型生物反应器,以进一步去除COD和色度。
  
  (1)曝气生物滤池(BAF)。印染废水经二级生化处理后,水中COD及BOD相对较低,曝气生物滤池填料上生长的贫营养微生物如假单胞菌、芽孢杆菌等,比表面积较大,对废水中的有机物有较强的亲和力。周锋〔13〕研究了BAF处理印染废水的二级出水,水解酸化+好氧工艺后增加BAF深度处理工艺,当进水COD<200mg/L,水力负荷1.0~2.0m3/(m2·h),气水比为(2~3)∶1时,出水COD去除率在50%以上,达到一级排放标准。曝气生物滤池中生物浓度和有机负荷高,处理效果稳定,出水水质好。滤池中的滤料粒径越小处理效果越好,但是小粒径又会使工作周期变短,滤料不易清洗,相应的反冲洗水量也会增加。因此选用合适的滤料粒径是充分发挥曝气生物滤池功能的关键。
  
  (2)移动床生物膜反应器(MBBR)。MBBR是一种新型的生物膜反应器。微生物在反应器内的填料上富集,填料悬浮于反应器内并随着混合液流动,因此气、水、填料三者能够在反应器内充分接触,氧的利用率和有机污染物的传质效率高,且生物膜的活性较高,老化的生物膜易从填料表面脱落。MBBR还具有不需要反冲洗、抗冲击负荷强、出水水质稳定等优点〔14〕。
  
  目前关于用MBBR工艺处理印染废水的研究不多。霍桃梅〔15〕发现MBBR深度处理印染废水时对COD及氨氮两项指标有良好的去除效果。进水COD由200mg/L左右降到50mg/L以下,氨氮由10mg/L降到2mg/L以下,但色度去除率仅为25%。
  
  印染废水中有机污染物品种较多,生物填料上的多菌种体系有较大的降解能力,所以MBBR作为深度处理工艺对有机物浓度较低的二级生化处理出水具有很大的优势。未来可以将MBBR在印染废水深度处理中的研究和应用作为一个发展方向。
  
  (3)膜生物反应器(MBR)。膜生物反应器集膜分离与生物降解于一体,可去除废水中大部分残余的COD、色度和所有的SS。而后通过NF(RO)工艺进一步处理,去除大部分盐度,出水水质一般能达到回用水要求。戴舒等〔16〕以回用为目的,采用由好氧反应器和超滤膜组成外置式MBR结合纳滤膜处理印染废水,结果表明:系统COD、色度和浊度的去除率均达到99%,电导率去除率97%。P.Schoeberl等〔17〕先采用MBR和NF结合处理印染废水,出水水质全部满足回用水指标,但是考虑到技术难度和高额的经济成本,而后用UF代替NF同样取得较好的效果。MBR的优点在于工艺流程短、占地面积少、出水水质稳定;缺点和膜分离技术类似,主要是膜污染导致的膜寿命短、成本高和电耗高。
  

  印染废水处理率不成五成,可见印染行业对废水处理并没有足够的认识。我国印染废水面临分散式、难集中管理的特点,对于小型的印染企业很难对废水深度处理,而大型企业对于印染废水处理工艺尚不能实现集中处理回用效果。给印染废水处理零排放效果推进也进来一定的难度。

此文关键字: 印染废水处理 

常见问题

行业动态

安峰动态